Hypersingular integral operators on modulation spaces for 0 < p < 1
نویسندگان
چکیده
منابع مشابه
wavelets, modulation spaces and pseudidifferential operators
مبحث تحلیل زمان-فرکانسی سیگنالها یکی از مهمترین زمینه های مورد بررسی پژوهشگران علوم ÷ایه کاربردی و فنی مهندسی میباشد.در این پایان نامه فضاهای مدولاسیون به عنوان زمینه اصلی این بررسی ها معرفی گردیده اند و نتایج جدیدی که در حوزه های مختلف ریاضی،فیزیک و مهندسی کاربرداساسی و فراوانی دارند استوار و بیان شده اند.به ویژه در این پایان نامه به بررسی و یافتن مقادیر ویژه عملگر های شبه دیفرانسیل با سمبل در...
OPERATORS ON WEIGHTED BERGMAN SPACES (0<p≤1) AND APPLICATIONS
We describe the boundedness of a linear operator from Bp(ρ) = {f : D → C analytic : (∫ D ρ(1 − |z|) (1 − |z|) |f(z)| dA(z) )1/p < ∞} , for 0 < p ≤ 1 under some conditions on the weight function ρ, into a general Banach space X by means of the growth conditions at the boundary of certain fractional derivatives of a single X-valued analytic function. This, in particular, allows us to characterize...
متن کامل0 Integral Operators on Spaces of Continuous Vector - valued functions
Let X be a compact Hausdorff space, let E be a Banach space, and let C(X,E) stand for the Banach space of E-valued continuous functions on X under the uniform norm. In this paper we characterize Integral operators (in the sense of Grothendieck) on C(X,E) spaces in term of their representing vector measures. This is then used to give some applications to Nuclear operators on C(X,E) spaces. AMS(M...
متن کاملBoundedness of Fourier Integral Operators on Modulation Spaces
It is known that Fourier integral operators arising when solving Schrödinger-type operators are bounded on the modulation spaces Mp,q, for 1 ≤ p = q ≤ ∞, provided their symbols belong to the Sjöstrand class M. However, they generally fail to be bounded on Mp,q for p 6= q. In this paper we study several additional conditions, to be imposed on the phase or on the symbol, which guarantee the bound...
متن کاملL p-SPACES FOR 0 < p < 1
In a first course in functional analysis, a great deal of time is spent with Banach spaces, especially the interaction between such spaces and their dual spaces. Banach spaces are a special type of topological vector space, and there are important topological vector spaces which do not lie in the Banach category, such as the Schwartz spaces. The most fundamental theorem about Banach spaces is t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2012
ISSN: 1029-242X
DOI: 10.1186/1029-242x-2012-165